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by 
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Department of Mathematics, 
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Abstract 

The three-dimensional boundary layer on a swept wing can support different types of 
hydrodynamic instability. Here attention is focused on the so-called ‘spanwise contamina- 
tion’ problem which occurs when the attachment line boundary layer on the leading edge 
becomes unstable to Tollmien-Schlichting waves. In order to gain insight into the inter- 
actions which are important in that problem a simplified basic state is considered. This 
simplified flow corresponds to the swept attachment line boundary layer on an infinite flat 
plate. The basic flow here is an exact solution of the Navier Stokes equations and its sta- 
bility to two-dimensional waves propagating along the attachment line can be considered 
exactly at finite Reynolds number. This has been done in the linear and weakly nonlinear 
regimes by Hall, Malik and Poll (1984) and Hall and Malik (1986). Here the corresponding 
problem is studied for oblique waves and their interaction with two-dimensional waves is 
investigated. In fact oblique modes cannot be described exactly at finite Reynolds number 
so it is necessary to make a high Reynolds number approximation and use triple deck 
theory. It is shown that there are two types of oblique wave which, if excited, cause the 
destabilization of the two-dimensional mode and the breakdown of the disturbed flow at 

a finite distance from the leading edge. Firstly a low frequency mode closely related to 
the viscous stationary crossflow mode discussed by Hall (1986) and MacKerrell(l987) is a 
possible cause of breakdown. Secondly a class of oblique wave with frequency comparable 
with that of the two-dimensional mode is another cause of breakdown. It is shown that 
the relative importance of the modes depends on the distance from the attachment line. 

* This research was supported by the National Aeronautics and Space Administration under 
NASA Contract No. NAS1-18107 while the authors were in residence at the Institute for Computer 
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, 
VA 23665. 
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1. Introduction 
Recent interest in the development of laminar flow wings has generated much interest 

in the different modes of instability which the three- dimensional boundary layer on a swept 
wing can support. There are essentially three different types of instability which such flows 
can support. Firstly these flows are susceptible to Tollmien-Schlichting instability waves 
induced by viscosity. These are important everywhere in the flow. Secondly the crossflow 
instability mechanism discussed by Gregory, Stuart and Walker (1955) is operational in 
three-dimensional boundary layers. This mechanism is inviscid in origin and is important 
sufficiently far from the leading edge of the wing where the spanwise velocity component 
of the flow is not negligible. Finally, if there are regions of concave curvature on the wing, 
the centrifugal instability mechanism will lead to counter-rotating Gortler vortices. 

Clearly in some boundary layers all three mechanism will be operational and their 
interaction might induce the premature transition of the flow. However, it is clear that if 
the boundary layer does not remain laminar in the attachment line region then there is no 
point in trying to control the other mechanisms further away from the leading edge. 

Experimental investigations of the attachment line instability problem have been made 
by Pfenninger and Bacon (1969), Gaster (1967) and Poll (1979). It was found that, if the 
input disturbances are small, instability waves propagate along the attachment line when 
the flow Reynolds number exceeds a certain critical value. Pfenninger and Bacon (1969) 
found that if the input disturbances were sufficiently large then there was some evidence of 
a subcritical response. The measurements made in these experiments were all close to the 
leading edge and showed no evidence of oblique Tollmien-Schlichting waves being present 
in the flow. 

Here we shall first discuss the linear instability of the aktachment line boundary layer 
on an infinite flat wall. We describe the instability using the approach of Smith (1979a,b) 
and therefore use triple deck theory. We find that in addition to the two-dimensional 
mode of Hall, Malik and Poll (1984) (hereafter referred to as HMP) there is possible, at 
any chordwise location, a family of unstable oblique waves. Each oblique mode is unstable 
only up to a finite value of X ,  the chordwise variable. This instability problem is discussed 
in $2. 

We then consider the nonlinear interaction of a two-dimensionalmode with an unstable 
oblique mode. This is done using the formulation of Hall and Smith (1984) for wave 
interactions in Blasius flow and leads to a pair of coupled amplitude equations which 
determine the evolution of the modes. These equations are found in $3 and in $4 we discuss 
the possible solution of these equations for different input waves. We show that there is a 
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particular type of interaction which leads to both disturbance amplitudes becoming infinite 
at a finite chordwise location. 

In $5 we briefly describe the numerical work needed to calculate the coefficients in 
the amplitude equations. We then discuss the nature of the solutions of the amplitude 
equations appropriate to the constants we calculate and the implications for the stability 
of the flow of interest. 

2. Formulation of the stability problem 
Consider the flow of a viscous incompressible fluid of kinematic viscosity v adjacent 

to the flat plate defined by y = 0 with respect to Cartesian co-ordinates (x,y,z).  The 
velocity field (u, v, w) corresponding to (x,  y, z )  satisfies the conditions I 

The Reynolds number R is defined by 

R=-, 
v 

and dimensionless variables ( X ,  Y,  Z ) ,  (U,  V, W )  are defined by 

(2.3a, b) 

If the pressure is scaled on pU$ and time, T, on Urn/ l ,  then the Navier Stokes equations 
become 

1 
- u, + ( E  0 V)V = -VP + (2.4) 

In order to satisfy the no-slip condition the basic state has a boundary layer of thickness 
lR-3 near Y = 0. If the boundary layer variable q is defined by I 

q = RiY, 

the basic state can be expressed in the form 

- u = (X.ii(q) , R - h ( q ) ,  W ( q ) ) ( l  + O(R+)),  , where 

(2.5) 

(2.6a, b, c) 



- 3- 

with 
v(0) = v'(0) = w(0) = 0, 

v'(00) = -1, 2is(oo) = 1. 
(2.7u, b)  

b It is known, Smith (1979a,b), that lower branch Tollmien-Schlichting instabilities of bound- 
ary layers are governed by triple deck theory. Here the interest is in oblique Tollmien- 
Schlichting waves proportional to E where 

pz €3 OT E 1 X 
E = exp[i{/ .O, + - - 71 , 

E3 

with E = R-6 << 1. The slowly varying wavenumber a is then expanded as 

In the main part of the boundary layer the basic state is perturbed by writing 

where Uo, Vo and Wo depend only on X and 77 whilst 6 is assumed small compared to any 
power of e. The corresponding pressure perturbation is e2 Po E where PO is a function of X 
only. The equations to determine Uo, VO in the main deck are: 

iaoUo + VO,, + ipW0 = 0, 

iaoxuuo + X h i i '  + ipwuo = 0, (2.11u, b,  c )  

iaoXiiW0 + Vow' + iPwW0 = 0, 

and the appropriate solution of this system is 

uo = u ( X ) X u ' ,  

vo = -ia(X)[aoXu + Pw], 
wo = u(X)w', 

(2.12a, b)  

where u ( X )  is an amplitude function to be determined. An investigation of the disturbed 
flow in the upper layer shows that all disturbance quantities decay exponentially there and 
that matching with the main solution requires 

Po+r: + p 2  = a[aoX + py.  

It should be noted from (2.12) that when 7 + 0 

uo II a(X)XX , wo E u(X)p, 

(2.13) 

(2.14) 
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where from numerical calculations it is found that A = 1.236, p = 0.570. Finally in the 
lower deck the presshre perturbation is still e2PoE whilst the total velocity field can be 
written : 

u = €[AX + * * + 6~u ,E  + * * * , 
I v = -€6yAX/2  + * + S E ~ U ~ E  + , (2.15a, b, c )  

W=€Cp+-  + SEWoE + ’ * * . 
Here the lower deck variable [ is defined by 

The equations to determine (uo, UO, WO) in the lower deck can be written as 

L(i)=O, 

where the matrix operator 

(2.16) 

0 -- d 2  iaoXA( - ippc + iRo -AX 

i P  d - 
d(‘ 

0 -P -- d 2  iaoxA[  - ippc + io0 -ip 
(2.17) 

The solution of the wall layer problem is then written as 

where 

(2.18) 

(2.19) 

(2.20) 

The pressure Po can be related to the displacement function b using the X and 2 momen- 
tum equations to give 

i{cii + p 2 p 0  = A ~ A ~ ’ ( C ~ ) ~ .  (2.21) 
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The lower and main deck solutions are then found to match if 

(2.22) 

where 00 

x o  = Ai(s)ds. 

The eigenrelation (2.22) determines the complex wavenumber ( Y O  for given p and R. For 
neutral stability it is known that 

0 

N l . O O l i + .  (2.23a, b)  Ai’( (0 ) Eo N -2.2983+, 
x o  

Thus the neutral values of ( Y O  and p are related by 

1.001(aoXX + pp): N & G ( a o X  + PI2. 

The modes corresponding to HMP have ( Y O  = 0 in which case /? satisfies 

p i  N 1.001p:. 

(2.24) 

At any given value of X there are in addition neutral three-dimensional modes with a0 # 0. 
The above analysis fails if (YOX + p or aoXX + pp become negative anywhere in the ( ( Y O ,  p)  
plane so only eigenvalues of (2.24) above the lines (YOAX + ,Bp = 0, and (YOX + p = 0 are 
acceptable. In Figure l a  a0 is shown as a function of ,f3 for X = 0.1, l., lo., 20., 30.. The 
solutions in the second quadrant asymptote to the line aoX + ,B = 0 as ,f? + --oo whilst 
those in the fourth quadrant asymptote to the line aoXX + pp = 0 as p + 0. Figure l b  
shows the neutral values of 52 as a function of ,f? for X = 0.1, l., lo., 20., 30.. 

Finally in this section we notice that the two-dimensional mode of (2.22) which of 
course corresponds to (YO = 0 is neutrally stable at all values of X .  The three-dimensional 
modes however are initially unstable on the attachment line X = 0 and become stable 
beyond a critical value of X .  Experimentally it appears that if the level of disturbances 
present in the flow is sufficiently small then it is the two-dimensional mode which is ob- 
served. In the next section we investigate the possibility that the two-dimensional mode 
might be destabilized by oblique modes which grow in the X direction. In Figure 2 we 

have shown typical growth rate curves for the three-dimensional modes. 
In fact the small p solutions are related to the stationary modes of instability of the 

three-dimensional boundary layer discussed by Hall (1986) and MacKerrell (1987). These 
modes orient themselves such that the shear stress of the ‘effective’ velocity profile is zero; 
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the lower deck structure is then described by parabolic cylinder functions rather than Airy 
functions. Thus when a0 tends to zero we find from (2.24) that 

PP = --aoXX + 0(ao) i ,  

6 

so that the neutral frequency tends to zero like a t .  Some discussion of the time dependent 
version of the stationary modes discussed by Hall and MacKerrell has recently been given 
by Bassom (1987). 

3. Weakly nonlinear theory 
Suppose that the three-dimensional mode with (a ,  p, 0) = (a2, P 2 ,  0 2 )  is neutrally 

stable at X = Xn. We consider the interaction of this mode with the two-dimensional 
disturbance which propagates along the attachment line. We know from the work of Hall 
and Smith (1984) that in the absence of the two-dimensional mode the three-dimensional 
mode will evolve in a nonlinear, nonparallel manner in an e$  neighbourhood of Xn. We 
therefore define X by 

Later we can derive the ‘quasi-parallel’ evolution equations for ( X  - Xn) > O ( E ~ )  by taking 
the limit X -+ 00. In order that the two-dimensional mode in this neighbourhood should 
be of finite size we suppose that, with s1 = 01, the neutral frequency for a two-dimensional 
wave, the spanwise wavenumber P1 is expanded as 

P1 = P l o + E P l l + E ~ p + * - ,  (3:2) 

where Plo, are the first two terms in the expansion of the neutral spanwise wavenumber. 
It is now convenient to represent the ‘fast’ dependence of the Tollmien-Schlichting 

waves in the X direction by multiple scales rather than the WKB formulation of 52. We 
therefore write 

Next we define 
p1z QlT 

€3 €2 El = exp[i{- - - 1 1 7  
P2Z 02T 

€3 E2 
-11, E2 = exp[i{azX* + - - 
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where R 1 ,  R 2  and P 2  expand as 

a 1  = 0 1 0  + €f i l l  + O ( 2 ) )  

022 = a 2 0  + e n 2 1  + 0(2), 

P 2  = P20 + EP21 + O ( 2 ) .  

(3.4a, b, c )  

Here s110,S211 etc. are the neutral values appropriate to the location X = X ,  whilst P 1  is 
as given by (3.2). For the three- dimensional mode we further expand 

Q2 = a 2 0  + e a 2 1  + O ( 2 ) )  (3.4d) 

where azo, a 2 1  are the first two terms in the expansion of the neutral value of a 2  at X = X,. 
In the lower deck we write the velocity in the form 

u = €<AX + 
v = -€6<2AX/2 + 
w = €</L+. . .  + €W, 

+ €3, 
+ €3Q, (3.5) 

and then expand the disturbance velocity field ( U ,  f’, W )  together with the corresponding 
pressure perturbation as 

7 9 (0, P, I,+, r;) = E % &  + e$& + E T &  + + - - - . (3.6) 

Here the term 27, corresponds to the fundamental modes proportional to El and E 2 .  

The second order term ,S2 corresponds to first harmonic and mean flow correction terms 

generated by the interaction of the TS waves. The third order term & again contains the 
fundamentals generated because the correction terms in (3.4) are O ( E ) .  Finally the fourth 
order term & contains fundamental and other terms driven by the interaction of ,Sl and 
-2 Is’ 

Clearly the function Sl satisfies the linearized problem of 52 so we write 

where C.C. denotes ‘complex conjugate’ and A,  B are functions of X to be found at higher 
order. The functions Si are defined by Sij = (Ui j ,  V ; j  , W; j ,  Pij) for i, j 2 1 and Sll, SI 
satisfy (2.16) with ((YO, P, a) replaced by (0, @ l o ,  Q10) and ( ( ~ 2 0 ,  P 2 0 , s 1 2 0 )  respectively. Thus 
for example we can show that 
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a 2 o U 1 2  + P 2 0 W 1 2  = 

i a 2 0  

A i  ' 

A+) ds, 1:: 
t 2  = A 2 5  + t 2 0 ,  A 2  = ( i K L a 2 0  + i P 2 0 P ) $ .  620 =,-- 

At next order we find that the first harmonics and mean flow corrections can be 
written as 

where B denotes the complex conjugate of B. We find that S21, S2, satisfy the differential 
system 

for n = 1 , 2  and a10 = 0. These equations must be solved subject to 

u 2 ,  = Vzn = W 2 n  = 0, < = 0. (3.10) 

The functions ,5'23 and &4 satisfy similar equations but with (2ano,2pno, 2sln0) re- 
placed by (a10 f a 2 0 ,  PIO f ,&, Rlo f azo) for n = 3,4  and the right-hand-side of (3.9) 
replaced respectively by 

and 
- i a 2 0 u 1 1 U 1 2  + V 1 2 F  + Vll* + q p 1 o W 1 2 u 1 1  - p 2 0  

0 
- i a 2 o U 1 1 W 1 2  + v 1 2 p  + Vll? + i(Pm - p 2 o ) w 1 1 W 1 2  

The mean flow corrections for S 2 5  and S26 have V25 = v 2 6  = 0 whilst for n = 1,2 

(3.11a, b)  
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which must be solved subject to 

(3.12a, b )  

In the main and upper decks the mean flow corrections and the first harmonic func- 
tions are not forced by the fundamentals and therefore satisfy similar equations to those 
discussed in 52; the matching of the main deck solutions for the first harmonics with the 
lower deck solution produces boundary conditions at ( = 00 for S'21 ) $22, $23 ) $24. 

At next order in the lower deck problem we obtain only fundamental terms driven 
by the variation of the mean state. In fact the solution of this linear problem when 
matched with the main deck solution determines the O(e) terms in the expansion of the 
neutral wavenumber and frequencies. Since the solution at this order has no effect on the 
amplitude equations for A and B we give no details of it here. 

The interaction of the fundamental term S1 with the mean flow correction and first 
harmonic term generates fundamental terms in &. In addition further fundamental terms 
are produced by the evolution of the amplitude functions A and B and the basic state on 
the X length scale. If we write & in the form 

where 
we find that L1 and a2 satisfy 

represents other terms forced by the interactions, then after some manipulation. 
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replaced by 
{ B ,  Asuffixes 12,11,22,21,23,24,26,25}. 

Finally the terms with suffix 24 are replaced by their complex conjugate. The disturbance 
velocities (U41, V41, W41) and ( u 4 2 ,  V42, W42) must of course vanish at < = 0 and the 
functions L1,L2 must match with the corresponding functions in the main deck. The 
latter matching conditions completely specify inhomogeneous differential systems for s1 
and L2. Since the homogeneous form of these systems have a solution it follows that we 
must apply solvability conditions to the systems for L1,S2. In order to write down these 
conditions we must introduce the differential systems adjoint to those which determine the 
fundamentals. We first note that if we define 

in (2.18) then the eigenvalue problem which leads to (2.22) can be written as 

F"' - i[aoXX + Pp][F' + iQF' = 0,  

F (0 )  = F'(co) = 0, 

F ( m )  = CF"(O), 

(3.14) 

where 
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The system adjoint to (3.14) is 

p' = 0 ,  

r'' - i[aoXX + Pp](r - iQr = p ,  

r(0) = Cp(m). q ( O )  = r ( m )  = 0, 

(3.15) 

It is easily seen that we can take p = 1 above and then solving the equation for r using 
variation of parameters and the boundary conditions give (2.22) again. It then follows that 
if R = R(ao,P) is an eigenvalue of (3.14) then the system 

GI" - i(a0XX + pP)(G' + iRG' = R, 

G(0)  = G ' ( m )  = 0 ,  G ( m )  - CG"(O) = y, 

will have a solution if im rRd( = y. 

Thus it follows that the differential systems for L1 , L2 will have a solution if 

(3.16~1, b)  

Here the coefficients X I ,  A2 are defined by 

(3.17~1, b)  
where for n = 1,2,  Gn, Hn are defined by 

with 
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Finally the constants u l ,  b l ,  u2, b2 are defined by 

where rl and r2 correspond to ‘r’ in (3.15) with (a ,  P ,  R) = (0, Plo, Rlo) and ( a ,  P ,  Q )  = 

( a 2 0 ,  P20 7 Q 2 0 )  respectively. 

4. The generalization and solution of the amplitude equations 

by an amount ~ $ f i  from the neutral value. In that case (3.16) becomes 
Firstly we note that the three-dimensional wave can also be ‘de-tuned’ by varying 

- XlPA - a l A  I A l 2  -blA I B 1 2 ,  dA 
d X  
d B  
d X  

-- 
I 

- = X3PB + XZXB - a2B I B l 2  -bzB 1 A 1 2 ,  
(4.la, b)  

where A3 is defined by an expression similar to (3.17a). Secondly we note that (3.16) 
apply in a e t  neighbourhood of the position where the three-dimensional wave is neutrally 
stable. Following Hall and Smith (1984) it can be shown that (3.16) apply over a longer 
length scale if A 2 X  in (4.lb) is replaced by X 2 X  where X is then treated as a constant in 
the amplitude equations. This result can be found directly from (4.1) by letting X + co 
and introducing a length scale shorter than X in order to retain the derivative terms. 
The resulting amplitude equations have a ‘quasi-parallel’ nature and correspond to the 
calculation of Smith (197913). 

x I 

We now define p and CT by 

in which case (3.16) and the generalization of this system for X >> 1 can be written 

(4 .2~’  b)  



and 

The precise nature of the solutions of (4.2), (4.3) depends sensitively on the constants 
appearing in these equations. We shall see in the next section that the constants alr and 
~ 2 2 ~  are positive almost everywhere so we first discuss such a situation in detail. In fact 
al, is always positive and this result is entirely consistent with the finite Reynolds number 
calculations of Hall and Malik (1986) for the two-dimensional mode. 

A matter of some importance is the question of whether p or u in (4.2) or (4.3) can 
become infinite at a finite value of X. This would mean that three-dimensionality could 
destroy the stable equilibrium states of Hall and Malik (1986). We seek a singularity of 
either system as X + XO by writing 

Po +.. .  
( X o  - X )  P =  

+...  0 0  
U =  (Xo - X )  

in which case P O ,  00 satisfy 
1 

(4.4~2, b )  
I 
- = - a 2 r ~ 0  - b2rp0, 
2 

and po and oo must of course both be positive. It follows immediately that no such 
singularity is possible if ul,, uzr, b l ,  and bzr are all positive. In fact it is easily shown that 
with air and ~ 2 2 ~  positive the only case when the singularity can occur is when blr  and bar 
are negative and 

This condition effectively identifies an important class of three-dimensional waves which 
can have a significant effect on the two-dimensional equilibrium states of Hall and Malik 
(1986). In order to see why this is the case it is necessary for us to discuss the solutions of 
(4.2) and (4.3) in more detail. We continue to discuss the solution for the case when al, 

and ~ 2 2 r  are both positive. 
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In fact we begin with a discussion of (4.3) and return to (4.2) later. It is easily shown 
from (4.3) that p and o have the possible equilibrium states: 

O, I 
a. p = f Y =  

.-. 

d. p = [ A i r p  - bl,f~]aF:, f~ = {X1rPb2r - [ X 3 r j  + A 2 r X ] a 1 , } / { ~ 1 , b 2 r  - a1ra2r}- 
(4.6~1, b, c, d)  

The solutions b and c correspond to ‘pure’ 2D and 3D modes respectively whilst d is a 

mixed mode. If the detuning parameters 6 and 6 are held fixed whilst X is varied we can 
determine the evolution of the equilibrium amplitudes as the disturbance develops away 
from the attachment line X ,  = 0. Note that X 2 ,  from (3.17b) is negative. The stability of 
the different equilibrium solutions can be checked by a routine stability analysis. Before 
discussing the nature of the solutions we note that in all the cases we computed, al ,  and 
~2~ are almost always positive in which case nonlinear effects are stabilizing if either the 2D 
or 3D mode exist separately. We further assume that the detuning parameter 6 has been 
chosen such that Xl,.pal, > 0 so that in the absence of a 3D wave a stable finite amplitude 
wave propagating along the attachment line is possible. If al ,  and ~2~ are positive then 
there are four possible combinations of signs for b l ,  and b2, .  The bifurcation properties 
for these four cases are summarized below: 

.-. ,., 

Case 1 alr’aar,  h t - 7  b2r > 0- 
The different possible solutions in this case are shown in Figures 3a,b for the ‘sub- 

cases’ bl,b2, > alra2, and bl,b2, < alra2, respectively. Sufficiently far upstream we see 
that only the pure 3D mode is a possible stable mode whilst sufficiently far downstream 
only the 2D mode is a possible equilibrium flow. In the case blrb2,. < alra2,. there is a 
short interval where the mixed mode is the only possible stable state. 

Case I1 al, ,  a2, > 0, b l , ,  b2 ,  < 0. 
The solutions in this case are shown in Figures 3c,d for the ‘sub-cases’ bl,.b2, > al,.a2, 

and blrb2,. < al,a2, respectively. In the first case the only stable solution is the 2D mode 
beyond the position where the mixed mode bifurcates from it. However, a phase plane 
analysis shows that a sufficiently large disturbance to this state is unstable. Thus there 
is a threshold type of response where a small disturbance to the 2D mode decays whilst 
a sufficiently large one will grow. The size of the ‘sufficiently large disturbance’ decreases 
to zero as X decreases to the point where the mixed mode bifurcates. Before this point 
there are no stable modes and any disturbance will grow, in this case and the threshold 
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amplitude case the growing disturbances terminate in the finite X singularity discussed 
previously. 

Case I11 alr,a2,,b2, > 0, b l ,  < 0. 
I 

Here the situation is as illustrated in Figure 3e. Dependent on the value of X either 
the mixed or 2D mode is stable. A phase plane analysis shows that each stable state 
is stable to an arbitrarily large disturbance so there is no threshold amplitude type of 

response. 

Case IV al, ,  a2,, b l ,  > 0, b2r < 0. 
The situation is now virtually the same as Case I11 except that the mixed mode loses 

stability to the 3D mode when X decreases so that the 3D mode is stable as X + -m. 

Again there is no threshold amplitude type of response at any value of X. This is illustrated 
in Figure 3f. 

I ?, 

* 

Thus we see that apart from the case ul, ,  u2, > 0 ,  b l r ,  b2, < 0 with b l rb2 ,  > alra2, 

there is always a stable equilibrium state available at any value of X .  Furthermore in the 
latter situation at sufficiently negative values of X the stable state is never the 2D mode. 
However, as the disturbance develops with increasing X ultimately only the 2D mode is 
stable. In the exceptional case a sufficiently large initial disturbance will terminate in a 

singularity at a finite value of X. 

I 

I 

I 

We now turn to the case where a l ,  and a2, are not both positive. We shall see in 
the next section that this situation is unusual and occurs when the constant a2, becomes 
negative so that nonlinear effects destabilize the three-dimensional mode. The situation 
in this case can be investigated following the previous discussion. The main result is that 

(4.1) then always permits a solution which becomes infinite at a finite value of 2. The 
singularity has the same structure as that discussed above with the only change being 
that, dependent on the other constants, it is possible for B alone to become infinite. The 
equilibrium solutions of the amplitude equations and thus instability characteristics can 
similarly be investigated for the case ~ 2 r  < 0. Here the three-dimensional mode bifurcates 
to the right and is always unstable. In some situations the mixed mode exists and it 
is possible for the two-dimensional mode to be stable to small perturbations. However 
sufficiently large perturbations always destabilize the flow so that we conclude that when 
a2, < 0 the presence of sufficiently large amplitude perturbations will always lead to the 
finite-X singularity being set up. We conclude that there are just two situations where the 
ultimate state set up after a wave interaction between two and three-dimensional modes 
will not be a stable two-dimensional mode. These exceptional circumstances correspond 
to when al,, 132, > 0, b l r ,  b2 ,  < 0 with a l r ~ 2 r  < bl,b2, or whenever a2, < 0. 
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A similar type of discussion for (4.2) is not possible because there are no equilibrium 
states for this system for all X .  However, for large values of X it is easy to show that 
there is a solution with p = A ~ , $ U ; : ,  o = 0 and that this solution is stable. There 
are no other equilibyium states so that, unless limit cycle solutions of (4.2) exist, or a 
singularity develops we expect any initial disturbance to evolve into a pure 2D mode at 
large X .  Numerical investigation of (4.2) showed no evidence of limit cycle behaviour and 
that in the exceptional case a finite X singularity develops and the 2D equilibrium state is 
then never set up. It remains for us to discuss the values of al , ,  a2,, bl,, b 2 ,  found in our 
calculations so that the above results can be applied to the instability of attachment line 
flow. 

5. Results and discussion 
We have seen in the previous section that the nature of the solutions of the amplitude 

equations depends crucially on the constants al , ,  b l r ,  az,, b2r .  These constants can be 
found only after the differential systems for the fundamentals, adjoint, first harmonic, 
mean flow correction functions have been solved numerically. These systems were solved 
using finite differences in the manner described in Hall and Smith (1984); the reader is 
referred to that paper for a more 
convenient to map the region 0 < 

which aids the convergence of the 

detailed description of the method. It was found to be 
< < 00 into [0,1] using the transformation 

2 
q = -tan-' <, 

7r 

velocity field at large <. The other significant difference 
between our calculations and those of Hall and Smith is that here the spanwise momentum 
equation has a solution with the velocity component tending to a constant rather than 
decaying algebraically to zero. In order to illustrate how this can be taken into account we 

consider the equations for (U21, V21, W21, P21). By combining the X *  and 2 momentum 
equations we can show that F = a 2 o U 2 1  + p20W21, and G = pU21 - XX,W21 satisfy 

The first of these equations is to be solved such that F ( 0 )  = F'(0) and F + constant 
when < + 00 whilst the second equation is solved subject to G(0) = 0, G(m) - <- ' .  Thus 
the combination pU21 - XX,W21 decays algebraically when 5 + 00. Having solved for F 
and G they can be combined to determine U21 and W21, then the equation of continuity is 
solved to determine V21. The equation for the first harmonic functions can be integrated 
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c 

using the same procedure. Finally in our discussion of the numerical scheme we note that 
the convergence of our scheme was checked when appropriate by varying the step length 
over coo the approximation to 00 in the 5 direction. 

The constants a l ,  b l ,  a2 and b2 were calculated for Xn = 0.1, l .75. and 10. The results 
are normalized by making aloUrl + PloWi; and a20Ur2 + /32oWiL both equal to unity at 
< = 0. Some typical value of these constants are shown in Table 1 below. We see that 
it is possible for either of the two exceptional cases of the previous section to occur. In 
Figures 4 and 5 we have plotted the neutral values of the a 2 0 7 P 2 0  and indicated where 
the exceptional cases occur. The first exceptional case with alr7 ~ 2 r  > 0 is denoted by * * * 

whilst the other exceptional case is denoted by - - - -. 
We see that at Xn = 0.1 an interaction of the two-dimensional mode with the three- 

dimensional mode with a / @  >- 1.27 will cause a singularity in the disturbance amplitudes 
to occur. Thus at Xn = 0.1 three-dimensional waves propagating at an angle of more 
than about 50" to the attachment line will cause the catastrophic breakdown of the two- 
dimensional mode. 

A further band of modes with a 2 0  < 0 which leads to the first exceptional case is also 
seen to exist. These correspond to low frequency three-dimensional modes. In the limit 
as a 2 0  + 0 these modes have zero effective shear stress and correspond to the stationary 
viscous crossflow modes of Hall (1986) and MacKerrell (1987). We conclude that near 
the attachment line the stimulation of oblique waves propagating at an angle greater than 
about 50" or the stimulation of the viscous crossflow modes of Hall and MacKerrell will 
cause a new larger amplitude disturbance flow structure to develop. 

When X, = 1 only the destabilizing band of wavenumbers corresponding to the low 
frequency modes remains and the interval over which they exist has decreased. However 
when Xn = 5 the stationary viscous crossflow modes become subcritically unstable so that 
the stationary viscous crossflow modes cause the finite X singularity to develop at almost 
all of the possible negative values of azo. In addition there is a very short band of oblique 
modes propagating at an angle of about 80" to the attachment line which leads to the 
singularity being set up. This band of unstable wavelengths no longer occurs at X, = 10. 
but the stationary viscous crossflow modes are now subcritically unstable for almost all of 
the possible values of a 2 0  with a 2 0  < 0. 

Without prohibitively expensive numerical calculations we cannot confirm that the 
results discussed above show the overall trend of the possible interactions when Xn in- 
creases. In fact some further investigation showed that the small band of destabilizing 
oblique modes at Xn appears and disappears as Xn varies. However our calculations do 
suggest that at small values of Xn there is a wide range of possible oblique modes and a 
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small band of low frequency modes which, if excited, will cause a catastrophic breakdown 
of the disturbance flowfield. Further away from the attachment line the oblique modes 
become less important and it is the lower frequency modes which become the dominant 
mechanism. 

Clearly our analysis cannot predict what kind of flow will be set up once the singularity 
appears. However we note that other modes, notably the inviscid stationary crossflow 
vortex mode of Gregory, Stuart and Walker (1955) might then become important. 
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Legends f o r  f i g u r e s  

F i g u r e  l a  The  n e u t r a l  e i g e n v a l u e s  s a t i s f y i n g  (2.241 

F i g u r e  I b  The  n e u t r a l  e i g e n v a l u e s  s a t i s f y i n g  (2.241 

F i g u r e  2 T h e  imaginary p a r t  o f  a0 s a t i s f y i n g  12.241 a s  a 

f u n c t i o n  o f  X f o r  a range o f  values o f  R . 

F i g u r e  3a The  e q u i l i b r i u m  s o l u t i o n s  f o r  a i r ,  a2rB b l r ,  b2r > o  

w i t h  birb2, > alra2r .  

F i g u r e  3b The  e q u i l i b r i u m  s o l u t i o n s  f o r  a l r 8  a2r. b l r s  bgr > o  

w i t h  blrb2, < alra2r.  

T h e  e q u i l i b r i u m  s o l u t i o n s  f o r  a a > 0, b l r J  b2r< 0 

w i t h  blrb2r > alra2,. 

ir’ 2 r  F i g u r e  3c 

T h e  e q u i l i b r i u m  s o l u t i o n s  f o r  a l r ,  a2r > 0, b l r ,  b2= < o  F i g u r e  3d 

w i t h  blrb2,  < a l r a2=  . 

F i g u r e  3e T h e  e q u i l i b r i u m  s o l u t i o n s  f o r  a l r ,  a2rs b2r > 0 ar8d b l r  < 0 .  

F i g u r e  3f The  e q u i l i b r i u m  s o l u t i o n s  f o r  a i r ,  a2 r ,  b l r  > 0 and b2= < 0. 

F i g u r e  4 T h e  d i f f e r e n t  b i f u r c a t i o n  s o l u t i o n s  f o r  Xn = 0.1, 1. 

F i g u r e  5 T h e  d i f f e r e n t  b i f u r c a t i o n  s o l u t i o n s  f o r  Xn = 5, 10. 
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